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UBG: An Unreal BattleGround Benchmark With
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Abstract—The deep reinforcement learning (DRL) has made
significant progress in various simulation environments. However,
applying DRL methods to real-world scenarios poses certain
challenges due to limitations in visual fidelity, scene complexity,
and task diversity within existing environments. To address
limitations and explore the potential ability of DRL, we developed
a 3-D open-world first-person shooter (FPS) game called Unreal
BattleGround (UBG) using the unreal engine (UE). UBG provides
a realistic 3-D environment with variable complexity, random
scenes, diverse tasks, and multiple scene interaction methods.
This benchmark involves far more complex state-action spaces
than classic pseudo-3-D FPS games (e.g., ViZDoom), making it
challenging for DRL to learn human-level decision sequences.
Then, we propose the object-aware hierarchically proximal policy
optimization (OaH-PPO) method in the UBG. It involves a
two-level hierarchy, where the high-level controller is tasked
with learning option control, and the low-level workers focus
on mastering subtasks. To boost the learning of subtasks, we
propose three modules: an object-aware module for extracting
depth detection information from the environment, potential-
based intrinsic reward shaping for efficient exploration, and
annealing imitation learning (IL) to guide the initialization.
Experimental results have demonstrated the broad applicability
of the UBG and the effectiveness of the OaH-PPO. We will release
the code of the UBG and OaH-PPO after publication.
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I. INTRODUCTION

EEP reinforcement learning (DRL) has achieved sig-
nificant progress in specific tasks within some game
scenarios [1]. For example, DeepMind used the deep Q-
network [2] to train an agent that exceeded human levels
in the Atari game, JueWu-MC [3] completed the diamond
mining task in MineCraft [4], which is also a difficult task
for humanity. However, these game scenes and tasks differ
significantly from the real world. Even in virtual highway
environments [5], algorithms that perform well in driving
tasks in games using DQN and DDAC for lane tracking may
face challenges in real-world applications due to insufficient
fidelity. Algorithmic research based on these benchmarks can
only be applied to specific gaming tasks, and it is challenging
to extend this further to real-life applications. Therefore, there
is a pressing need within the RL research community for more
challenging benchmarks.
As shown in Table I, we summarize some commonly used
research benchmarks and highlight the limitations associated
with them.

1) Low-Visual Fidelity: Some benchmarks only feature
low-quality rendering textures and toy-like visual styles,
such as Quake III and ViZDoom (shown in Fig. 1). This
can pose challenges for applying certain detection and
recognition methods developed on these benchmarks to
real-life scenarios.

2) Starved State-Action Space: The low complexity of
the scene and limited interaction with the environment
lead to an insufficient state-action space. For example,
ViZDoom only features 13 common key combinations
and an average of 2000 frames per play [6]. As a
result, the trajectory space created by these combinations
[7] is relatively limited in scope. A larger state-action
space can introduce more challenging tasks, providing
a better platform for developing more intelligent DRL
algorithms.

3) Inconvenient Script Editing: As indicated in the
“scripting” column of Table I, certain benchmarks lack
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TABLE I

OVERVIEW OF SOME BENCHMARKS: “MED.” IS SHORTHAND FOR MEDIUM. “COMPL.”, “INTER.,” “T-D.,” AND “GRAPH.,” DENOTE “COMPLEXITY,”
“INTERACTION,” “TOP-DOWN VIEW,” AND “GRAPHICAL,” RESPECTIVELY. THE VALUE OF TRAJECTORY SPACE IS ESTIMATED BASED ON THE
NUMBER OF POSSIBLE ACTIONS AND THE GAME’S DURATION. “GAME COMPLEXITY” IS ASSESSED BY CONSIDERING THE DIVERSITY OF
GAME MODES AND THE MAGNITUDE OF STATE-ACTION SPACE. AT THE SAME TIME “VISUAL REALISM” IS EVALUATED THROUGH
THE PRECISION OF IMAGE SIMULATION AND THE FIDELITY OF THE PHYSICAL REPRESENTATION

G Engi Scene Scene  Game Visual Screen  Depth  T-D.  Graph. Free Seripti System Disk Trajectory
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Fig. 1. [Illustrations of different game scenes. Compared with previous
benchmarks, UBG exhibits higher visual realism and more complex scenes.
(a) Quake III. (b) ViZDoom. (c) UBG.

support for convenient script editing. This makes it
challenging for researchers to set up game components.

4) No Access to Environment Information: The lack
of access to essential information, such as screen
buffer, depth buffer, and top-down view map makes
it challenging to develop more flexible and adaptive
DRL algorithms that are better suited to real-world
environments.

S) Insufficiency of the Auxiliary Function: Certain games
may not be explicitly developed with research pur-
poses in mind, which can result in a lack of adequate
auxiliary functions. These functions, such as the record-
ing function and access to more abstract information,
are crucial for addressing complex control problems.
The combination of these various factors presents a

growing challenge in meeting the needs of the research
community.

To address the above issues, we developed Unreal Battle-
Ground (UBG), a 3-D open-world first-person shooter (FPS)
benchmark. We utilize the most popular game engine, UE
to develop UBG for its impressive rendering capabilities. As
shown in Table I, the proposed UBG boasts higher visual
fidelity, a larger trajectory space (over 100 discrete actions
and 3000 frames per game), rich environment information
access, numerous auxiliary features, and will be entirely
open-source. Similar to the battle royale game setup, where
multiple characters compete in an ever-shrinking play area
until only one remains, UBG includes multiple subtasks, such
as navigation, firing, and supply collection. In addition, the
procedural content generation (PCG) technique was incor-
porated to generate special components, such as enemies,
effectively enhancing the diversity of the game environment.
UBG is specifically designed for agent learning in open-world
environments and offers various scene interaction actions, such
as breaking through windows, vaulting, and crawling. Possible
scene changes brought by interaction provide more spaces
for exploration, greater flexibility in task design, and the
possibility of generalization with diverse scenarios. We believe
UBG can effectively serve the research in open-world agent
learning.

Based on UBG, we investigated several issues that RL faces
in 3-D open-world environments, such as partial observability
and sparse rewards [3]. As a result, we propose the object-
aware hierarchically proximal policy optimization (OaH-PPO)
to enable efficient explorations in UBG. OaH-PPO is a
hierarchical RL framework with a novel imitation learning
(IL) method. Inspired by Huang et al.’s [8] work, we also
incorporate object detection and depth images to fully leverage
the high-fidelity environment of UBG. In response to the
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limitations on aiming accuracy and transferability posed by the
supervised grid-like auxiliary input, we opt for high-resolution
coupled depth detection maps as augmented input. To adapt
to the dynamic nature of game situations, we incorporated
potential-based intrinsic rewards that direct the actions of low-
level workers. Furthermore, we propose the use of margin-clip
PPO, an efficient method for utilizing human demonstrations
(Demo.) in the learning process. This comprehensive approach
ensures the robustness and adaptability of the network in
various shooter games [9]. The contributions of this article
are as follows.

1) We release UBG, a 3-D open-world FPS benchmark. It
includes a high-fidelity environment that can be easily
customized. Its intricate and varied game scenes will
present novel challenges for the RL community.

2) We propose the OaH-PPO approach, which incorporates
an object-aware module to augment input, intrinsic
reward shaping to address reward sparsity, and the
integration of demonstrations to guide the initialization.

3) The conducted experiments in UBG and ViZDoom
showcase the control capabilities and generalization of
our framework. Our model consistently outperforms
existing algorithms in various game environments.

II. RELATED WORKS
A. Shooter Games

As indicated in Table I, the most classic FPS benchmark,
ViZDoom [10], utilizes low-resolution textures while having
the most lightweight architecture. Three Visual Doom Al
Competitions (VDAIC) [11] were organized to promote the
application of RL in shooter games [12], [13]. The augmented
DRQN model [9] exploited both visual input and the game
feature information to augment the network. Also, Bhatti et
al. [6] used object detection and 3-D-scene reconstruction to
extract different component information.

Half-life two lacks screen buffer access support. Although
similar problems are shared by Unreal Tournament (UT) and
CS:GO, Dawes [14] deemed UT a potential Al research
test bed. Also, Pearce [15] employed large-scale behavioral
cloning (BC) [16] to play CS:GO.

Quake III’s scripting capabilities were greatly extended by
DeepMind [17]. As a result, there has been a substantial
amount of research built upon it in recent years [18], [19].
WILD-SCAV [20] is a recently launched environment that
also has huge exploration spaces with over 30 unique actions.
However, to reduce rendering pressure, the game significantly
reduces the rendering batches, so the trajectory space in Table I
is not considered very large. In addition, its toy graphics may
not be conducive to expanding into the real world.

In contrast to classic arcade games (i.e., ALE [21] and
StarCraft II [22]), FPS games feature 3D graphics and partially
observable states [23]. Their flexible and complex action con-
trols make them a more realistic research environment. Many
modern 3D FPS game environments have emerged for visual
RL agents [24]. Also, it is a pity that the latest FPS video
games, such as PlayerUnknow’s BattleGrounds (PUBG) and
Grand Theft Auto (GTA), do not provide adequate application
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programming interfaces (APIs) to access their internal data and
sometimes have licensing issues. In parallel with these efforts,
we are investigating further advancements in the field of Al
agent learning through the use of large-scale, open-world FPS
games.

B. Reinforcement Learning

Hierarchical reinforcement learning (HRL) [25], [26],
related to our work, improves learning efficiency by build-
ing and leveraging a hierarchical structure of cognitive and
decision-making processes. Inspired by Dayan [27], Vezhn-
evets [28] proposed a feudal network capable of automatically
discovering subgoals. Based on the concept of options [29],
option-critic (OC) [30] extended the policy gradient theory
to options for learning options that scale to vast domains.
H-DQN [31] learned hierarchical work values at different time
scales, while the MaxQ architecture [32] decomposed tasks
by decomposing value functions. Barto [33] believed HRL
provides a natural framework for incorporating principles of
intrinsic motivation. Existing work [34], [35] primarily relies
on sparse environmental feedback for task decomposition
guidance. In contrast, our work suggests that organically
combining intrinsic rewards with hierarchical structures
through reward shaping can significantly improve training
efficiency.

IL introduces additional information sources, such as expert
demonstrations, to initialize or guide agent training. This
effectively alleviates the problem of low sample efficiency in
DRL. However, directly using BC can result in insufficient
generalization. Dataset aggregation (DAgger) [36] was a more
useful and efficient online IL method. Inverse reinforcement
learning (IRL) [37] extracted a reward function from expert
policy, which was then used for forward RL. Gupta [38]
proposed a two-phase approach consisting of an IL stage
and an RL phase. While existing studies on IL [39] pre-
dominantly employ off-policy algorithms, the integration of
demonstrations into on-policy algorithms [40], facilitated by
the use of additional regularization terms and clipping, can
more naturally establish a balance between exploration and
exploitation.

III. PRELIMINARIES

The PPO [41] algorithm implements a direct clipping mech-
anism on the objective function utilized for policy gradients.
This approach leads to a more conservative update strategy and
simplifies the computational process. Let r,(6) be the prob-
ability ratio ]_[fza "(7to(aD|s) /7tg,,(a?]s)). The standard PPO
algorithm uses a ratio clip function as follows to discipline
extreme changes to the policy:

jﬂcup( 0= E

B, [min (r,(0)A,, clip(r:(6), 1 —€, 1 +€)A,)
S, T

(D

where A,(s,a) = Zio(y/l)léx_l is the advantage value com-
puted by generalized advantage estimation (GAE) [42], and
5;‘/ =R, +yV(si11) = V(sy).

DQfD [43] and DDPGfD [44] encounter limitations in
fully leveraging expert trajectory learning, particularly when
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(b) (©)

Fig. 2. UBG provides access to the regular screen buffer, the depth buffer, and
the top-down view map. (a) Regular screen. (b) Depth buffer. (c) Top-down
view map.

there are few demonstrations available. Furthermore, the
rewards obtained from demonstrations that deviate from the
current environmental rewards may render them ineffective.
To address this, Kang et al. [40] proposed an additional
regularization term, denoted by Djs(my, mg), by leveraging
the one-to-one correspondence between policy and occupancy
measures. This term encourages exploration around the con-
fidence region of the demonstration trajectory &p, thereby
demonstrating the feasibility and effectiveness of incorporating
demonstrations into the policy algorithm PPO. However, the
computation of this additional term, which is based on the
Jensen-Shannon divergence, poses a challenge due to its com-
plexity, leading to substantial computational costs, especially
when dealing with large state-action spaces. Reflecting on
the simplification of the PPO algorithm from the TRPO [45]
algorithm, a first-order approximation of the regularization
term is chosen, and simple additional terms are constructed
using importance sampling and clipping techniques.

IV. GAME DESIGN

A. Advantages of UBG

One of the critical features of UBG is the ability to
customize complex scenes easily. Utilizing the UE editor, a
real-time graphical editor, individuals without programming
can readily edit map scenes, set particular components (such
as ammo and guns), and modify game settings (such as
terminal conditions and rewards). With the support of its
large community and a variety of free original assets, this
mechanism can accommodate the diverse needs of researchers.
In particular, it enables the creation of scenarios that are
sufficiently challenging to evaluate the capabilities of learning
algorithms effectively.

UBG is supported by UE’s animation blueprint system,
which offers a well-structured and comprehensive action
sequence space. It allows agents to simulate human key-
board and mouse real-time control through various action
combinations, enabling them to perform complex interactions
within the scene. This also means that UBG can facilitate
the testing of algorithms that involve continuous actions [46]
or operate in continuous time [47]. In addition, multiple
scene capture components provide information about the agent
and its surrounding environment, including RGB maps with
adjustable resolution, depth images, and top-down view maps,
as depicted in Fig. 2. Access is also provided to various
game variable information, such as the agent’s current position
and orientation, health, backpack information, playtime, and
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more. This information is critical for the agent’s overall under-
standing of its environment. At the same time, UBG supports
free switching between various perspectives. To enhance the
presentation of high-fidelity digital humans and scenes, this
article uses third-person perspective images, but subsequent
experiments follow the convention of using the first-person
perspective. We introduced the latest technologies, such as
“PCG,” and advantages applied in the four modules of UBG
in the appendix: pawns (characters), maps, functions, and
interactions.

B. Application Programming Interface

Refer to UnrealCV [48], UBG’s server communicates with
the client using TCP. The server utilizes UE’s C++ API
to access information about the virtual world. Meanwhile,
the client is an integrated library containing both Python
and C++ bindings that communicates with the server by
sending commands and parsing responses. The communication
protocol is defined by a set of Jycomm commands, with
further details available in the Appendix. UBG is supported
on major platforms, including Windows, Linux, and Mac,
and provides complete control through its rich Python and
C++ APIL Game settings, such as game difficulty, can be
directly configured through the profile. The game data logging
feature also suggests the potential for applying reinforcement,
imitation, and curriculum learning [49] algorithms. We have
provided detailed information on the communication process
in the Appendix.

C. Game Settings

UBG currently offers a variety of scenes, including desert,
city, and forest, as well as two modes: training and deathmatch.
In the training mode, you can experience the real physics
of the UE, such as gun recoil, and pretrain agents to aim
or collect supplies. In deathmatch mode, you will face a
controllable number of enemies and must collect scattered
supplies to defeat as many enemies as possible. Please refer
to the Appendix for more details about game modes and map
environment settings. In addition, the supplementary materials
feature a demonstration video showcasing UBG.

Furthermore, it is essential to take into account the compu-
tational costs associated with high-fidelity environments such
as UBG. In the Appendix, a thorough quantitative analysis is
provided to offer a detailed understanding of these costs.

V. ALGORITHM DESIGN

In consideration of the phases of the shooter games, we
design a hierarchical network consisting of a controller and
workers [50]. Also, we define n subtasks based on human
cognitive patterns and structure demonstrations accordingly
Bp — {Bp,.Bp,,-..,Bp, ) [51]. Fig. 3 illustrates the
architecture. Specifically, the controller determines abstract
subtasks, or options, at a lower temporal resolution. The
worker specified by the option executes basic game actions
at a higher temporal resolution to fulfill the received subtasks.
Following human habits, the action space is divided to allow
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Fig. 3. Our proposed OaH-PPO architecture. The controller employs on-the-fly object detection to generate a depth mask, enabling complete object perception.
It then makes “options” based on game information and calculates the corresponding intrinsic rewards. The selected worker interacts with the environment by
choosing a set of orthogonal actions through the network. The online trajectories are deposited into the experience buffer and trained with the demonstration

data using PPO from demonstrations (PPOfDs).

for the simultaneous execution of multiple actions. Further-
more, the environmental depth information is introduced to
facilitate exploration, and a unique intrinsic reward based
on potential function is designed for each worker. Last, a
margin-clip PPO algorithm is proposed for the incorporation
of human demonstrations, which ensures the convergence of
training and the efficient utilization of demonstrations with
labels (deterministic actions). The details of our network are
provided in the remaining paragraphs.

A. Object-Aware Hierarchical Net

In our two-level hierarchical network, the controller func-
tions as a high-level option-maker, learning a policy that maps
the continuous state space S to the discrete option space
O =(0,1,...,n—1). Low-level workers learn policies that are
capable of achieving the objectives of each option, observe the
environment, and output actions until termination.

Negative log-likelihood (NLL) loss was used for pretraining
to enable the controller to accurately select workers at an early

stage
n—1

minZ E

-1 c (i ,
i e, I 108 () o

where (s, 0') is state-option pair sampled from the demonstra-
tions Bp, and 6 represents parameters of the controller’s policy
7. We design four types of workers: resource collector, enemy
navigator, attacker, and tool user. Each worker has the same
network structure and outputs the original game action after
decoupling and action masking [7].

Object-Aware Controller: Inspired by the previous research
[52], we employ on-the-fly object detection YOLOv7 [53] to
augment the ability of workers. Unlike 2-D scenes, exploration

in 3-D environments requires a sense of distance, so depth
information are necessary to guide the agents. Various com-
ponents are segmented from the depth image to create a depth
map. We utilize the camera pose to project the component
depth information into the top-down view map, allowing for
improved intrinsic reward computation. It is worth noting
that OaH-PPO only calls the top-down view map auxiliary
calculation when inferring intrinsic rewards, and it is no longer
needed during testing. The introduction of depth maps and
intrinsic rewards can significantly improve the exploration
efficiency of workers and reduce the costs associated with
understanding and extracting high-level information.

B. Intrinsic Reward Shaping

Combining intrinsic reward shaping according to workers’
utility with a hierarchical structure is an effective method
for solving the problem of reward delay and sparse reward
[13]. Ng [54] demonstrated that the additional shaping-reward
functions R;: SxA x S — R take the form of a difference of
potentials (3) are the only F that will guarantee consistency
with the optimal policy

Ry (s,a, s’) =y® (s’) — O(s) 3)

where ®: S — R is a real-valued function. Taking the attacker
as an example, we introduce the potential-based intrinsic
reward shaping method. For more information on the intrinsic
rewards of workers, please refer to the Appendix.

Attacker is responsible for aiming and shooting. The reward
for kills R is provided by extrinsic rewards, and WX is its
weight(WZ for kills, O otherwise). Consequently, its intrinsic
rewards consist of a positive reward for the proximity of the
crosshair to the enemy and a negative reward for the enemy
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Fig. 4. Intrinsic reward potential function example.

disappearing from view. We introduce the Gaussian function
as the potential function

i
max, Wke @i, n, >0

cDa[l 5) =
() 0, n,=0

“4)

where A,y < 1 and @,y are the hyperparameters of Gaussian
functions and dyq = (daw.1, - - - > dawn,) 15 the distance between
enemies and crosshair. n, denotes the number of enemies in the
detection map. Fig. 4 visualizes the intrinsic potential function
of an attacker. The figure indicates that the potential energy
rises as the crosshair nears an enemy, suggesting a positive
intrinsic reward. At the point where the contour lines intersect
between two enemies, advancing toward either enemy proves
advantageous.

Specifically, in light of the potential for nonstationary in the
potential function due to factors such as partial observability,
certain constraints are imposed on the intrinsic reward to
ensure its efficacy

0, ne#n,, RE =0

att A
R? (S’ a,s ) - ,yattq)att(sr) _ q)att(s)’

(&)

otherwise

where y*" can be set to 1 to ensure that the potential energy of

the intrinsic reward is always within the interval of [0, /lauWé].
As the crosshair gradually approaches and overlaps with the
enemy, the potential energy continues to increase to /lmWE. In
this process, the external reward remains constant at O until the
enemy is hit and disappears, after which the potential energy
falls to 0. The intrinsic reward value is —/lanW,’;, while the
extrinsic reward value is W,’;, and the overall reward R* =
RE + R¥ will be (1 — Ay)WE > 0, still a positive reward for
the attacker.

C. PPO From Demonstrations

To expedite the learning process for workers in solving
subtasks, we employ the IL method [55]. The demonstration
consists of structured records of successful gameplay by
human players, which have undergone a thorough filtering
process.
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Specifically, in addition to the agent’s current policy experi-
ence Buffer B,, we maintain a demonstration buffer Bp. Bp is
initialized with expert demonstrations and remains unchanged.
We employ the scheme of Kapturowsk [56] to prioritize
the experience buffer. The annealing parameter p determines
whether to sample from Bp.

The introduction of additional demonstration buffer updates
necessitates the modification of the PPO algorithm’s objective
function. Take workers, for example, to incorporate the useful
information contained in the demonstration buffer, we intro-
duce some additional terms to the objective function without

clipping
JO = B [nOAt0]

s,a)EB,

+ E_ [n@Wp(s.a)]. (6)
(s,a)eBp

Vanilla Term Demonstration Term

For worker i, its reward function is Rl = R}, + Rg;. As the
controller runs at a slower time scale, its reward function
is calculated as the sum of extrinsic rewards accumulated
during the worker’s period: Rf = ﬁtltv Rey. Wp, is a heuristic
weighting function [57]

Wp(s,a) = 1A% max A (s,d) Y(s,a)eBp (7
s’ ,a' )eB,

where 4y and A; are the hyperparameters and k represents
the iteration counter. The decay of the weight term via A%
is designed to maximize learning from demonstrations in the
early stages while avoiding gradient bias in the middle stages.

In the case of demonstration, where np = 1, it implies
that r,() = my, which is always less than 1. Consequently,
the standard clip function will only exert half of its intended
impact, which is to restrict the new policy from deviating
excessively from the demonstration. However, the filtered
demonstration nature implies that Wp(s,a) will be positive,
and the new policy will gradually approach the demonstration.
Therefore, we propose a margin-clip function to prevent the
network from overfitting on small demonstration datasets

Iy = E_ [min (r(0)Wp, clip(r(6), 1, u2)Wp) ] (8)

(s,a)eBp

where 1 > pp > 1y > 0. The margin-clip function limits r,(6)
to be within the range of u; and w,, which helps to prevent
the policy from getting too close to the demonstrations.

We introduce causal entropy H(my) [58] to mitigate the
risk of entrapment in local optima. Consequently, our final
objective function is articulated as follows:

TP = TP ©O) + T5HP(6) + ,H(mp). )

VI. EXPERIMENTS
A. Experimental Setup

We conduct experiments using the deathmatch mode on
the desert map in UBG and the full deathmatch mode in
ViZDoom. Note that UBG can support multiple combinations
of different task types and maps. However, even for the same
task and map combination, the gameplay experience can vary
significantly due to the random generation of scene compo-
nents. As such, we chose to focus on a representative task
scene experiment: deathmatch mode on a medium-difficulty
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Fig. 5. Comparison of average rewards of different algorithms during training.

desert map. Three different random seeds were used in each
experiment, and we displayed their mean value (solid line)
and variance (shaded area). A smaller shaded area indicates a
smaller variance, suggesting greater stability.

To ensure a fair comparison, we utilize the same resource
configuration and fixed hyperparameters for all experiments.
All algorithms are run on the same machine, equipped with
24 Intel' 4310 (2.1 GHz) CPU cores and 1 3090 GPU card.
The initial learning rate for the Adam optimizer is set to le ™,
and the reward discount factor y is set as 0.99. In margin-
clip PPO, the clipping parameters y; and p, were set to 0.3
and 0.6, respectively. In addition, we set 4 = 0.95 in the GAE,
Ao = 0.1 and 4; = 0.98 in demonstrations augmented objective
function.

B. Experiment on UBG

We utilize a 2-h gameplay record of human participants as
a demonstration. All experiments utilize the same extrinsic
reward, which can be found in the Appendix. Our framework
enables the computation of immediate extrinsic rewards during
training, and the intrinsic reward is not included in the final
result. This ensures the fairness of experimental comparisons.

1) Comparison With Baselines: We compare our method
with several existing methods, including DDPGfD, OC, and
BC. BC’s score is the average score of 20 episodes. We also
employ the hierarchical PPO (H-PPO) algorithm as a baseline.
H-PPO is the basic version of the OaH-PPO model, but it
lacks three crucial components: object-aware (Oa) module,
potential-based reward shaping (PBRS), and introduction of
Demo. H-PPO still adopts a hierarchical structure and directly
uses depth images and sparse rewards without utilizing human
demonstrations. As shown in Fig. 5, our method significantly
outperforms the baselines regarding convergence speed, final
score, and standard deviation. This means that our approach
has improved in terms of sample efficiency, performance,
and stability. Interestingly, even without demonstrations, the
agent trained using our method outperforms the baselines

IRegistered trademark.
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Fig. 6. Partial results of ablation experiments.

considerably. It is worth noting that, during the middle and
late stages of the experiment, the OaH-PPO without demon-
strations reached the same level as the full version, which
is consistent with our experimental design. By analyzing the
experimental replay records, we observed that some baselines
(such as DDPGfD and H-PPO) were able to learn how to find
resources but were unable to handle more complex tasks, such
as aiming and shooting effectively. When facing enemies with
a small hit range in the UBG, these baseline agents persist in
their attacks but rarely hit their targets, ultimately resulting in
their defeat by the enemies.

2) Ablation Study: We perform ablation experiments to
comprehend the roles of different components in our method.

In Fig. 6, we mainly analyze three components of the
model network: Oa, PBRS, and Demo. The full version
refers to the complete model we trained, while H-PPO, as
mentioned earlier, refers to the model without the above three
components.

First, we analyze the Demo. By comparing the results,
we can conclude that the introduction of demonstrations can
effectively guide the early actions of the agent, helping the
agent achieve a “warm start” and accelerating the convergence
rate. At the same time, in the middle and late stages of the
experiment, the weight of the module is gradually reduced to
0, so it does not affect the final ability of the agent.

Next, we analyze the Oa module. According to a com-
parison between the experimental results obtained without
the Oa module and those obtained with the full version, it
is evident that the Oa module can significantly improve the
agent’s abilities. This improvement is attributed to a better
understanding of enemy and resource location information,
resulting in a higher hit rate for the agent. Compared with
the results of the experiments conducted without Demo. and
Oa modules, and combined with the conclusion that the Demo.
does not affect final performance, we can be more confident
in this finding.

The final part of our analysis focuses on the PBRS module.
The efficiency of this module is somewhat different from
our expectations. By comparing experiments using only the
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Fig. 7. Complete results of ablation experiments.

TABLE I
EXPERIMENTAL RESULTS OF CITY MAP

Method Reward  Converge Time  Converge Steps
DDPGfD 8.6 26h 8.8 x 10°
ocC 10.6 31h 7.6 x 10°
BC 1.3 - -
H-PPO 7.2 34h 9.5 x 10°
0aH-PPO 16.2 28h 4.3x10°
TABLE III

EXPERIMENTAL RESULTS OF FOREST MAP

Method Reward  Converge Time  Converge Steps
DDPGfD 9.4 21h 8.1 x 10°
oC 11.7 25h 6.9 x 10°
BC 1.5 - -
H-PPO 7.7 28h 8.9 x 10°
0aH-PPO 18.3 23h 3.8 x 10°

PBRS module to those that use H-PPO, we discover that the
PBRS module can effectively accelerate model convergence.
However, the performance of the experiments using the full
version is not significantly different from those conducted
without the PBRS module. We hypothesize that this is due
to the guiding effect of demonstrations.

The complete ablation experimental results are shown in
Fig. 7. When utilizing only the Oa module, the agent gradually
masters the rules of the game after an extended period of
exploration and quickly begins to score points. This also
confirms that our other two modules can provide guidance and
accelerate the learning process for the agent. When comparing
the results of using only the Demo. (without Oa and PBRS)
versus using both the Demo. and PBRS modules (without Oa),
it is found that the increased capabilities of the agent utilizing
the PBRS module also contributed to improve performance.

As shown in Tables II and III, we have conducted gen-
eralization and stability tests on our algorithm framework in
various map scenarios. In addition to the final reward value and
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TABLE IV
PERFORMANCE UNDER DIFFERENT PARAMETERS OF DEMO

Demo. Size A1 Converge Steps  Reward
1.00 2.6 x 10° 4.70
100% 0.98 3.4 x 10° 12.1
0.90 4.9 x 10° 11.6
1.00 3.1 x 10° 430
50% 0.98 3.6 x 10° 11.4
0.90 5.1 x 10° 11.2
1.00 4.6 x 10° 4.80
10% 0.98 6.5 x 10° 10.1
0.90 7.8 x 10° 9.20
0% - 9.5 x 10° 8.60

the number of steps to converge, we also calculated the time
required for the algorithm to converge. It can be observed that,
on the same hardware setup, OaH-PPO demonstrates notable
superiority in efficiency, achieving superior results in a notably
shorter timeframe compared to the majority of alternative
methodologies.

3) Demonstration Study: The PPO algorithm is an on-
policy algorithm, but the introduction of margin-clip and
importance sampling makes it robust to demonstration data.
We test the performance of the Demo. module under different
parameters to verify its effectiveness. As shown in Table IV,
the experiment only includes demonstration modules. Ade-
quate demonstrations and appropriate parameters ensure the
effectiveness of the demonstration module. A too-short decay
period (1; = 0.9) reduces its impact and slows down conver-
gence, while a too-long decay period (1; = 1) may result in
the network no longer being affected by policy gradients.

C. Experiment on ViZDoom

We also use the ViZDoom platform to conduct our experi-
ments. We considered the full deathmatch on unknown maps,
adapted from VDAIC 2016. Agents were trained and tested on
different maps, starting with a pistol and the ability to pickup
various weapons and items, such as ammunition, medical Kkits,
and armor. PyOblige [13] was used to generate seven maps for
training and three for testing. All maps have similar difficulty
and textures.

Following the rules of the VDAIC, we utilized frags (cal-
culated as the number of killed minus the number of suicides)
as a evaluation metric for evaluation. In addition, we reported
the number of kills, suicides, deaths, and frag-to-death (F/D)
ratios to further analyze the agent’s abilities. Our agent was
compared to Arnold [9], CLYDE [12], and human players. To
verify the effectiveness of the Oa module on other platforms,
we also tested H-PPO (without the Oa module).

VDAIC itself did not provide a demonstration for players,
and later prohibited the crouch action. To be fair, none of the
models used demonstrations. OaH-PPO and H-PPO removed
the enemy navigator worker, and blocked the crouch action
while Arnold retained this action. Each map was tested for
15 min, and the final performance was averaged. As shown
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TABLE V
PERFORMANCE OF THE AGENTS IN THE VIZDOOM TEST MAPS

Player Frags F/Dratio Kills  Suicides  Deaths
Arnold 51.0 4.78 53.3 23 10.7
CLYDE 45.7 2.63 47.7 2.0 17.3
Human 39.0 2.17 45.7 6.7 18.0
H-PPO 52.0 3.06 56.7 4.7 17.0
OaH-PPO 593 4.05 63.7 43 14.7
‘ Animation ‘ ‘Metahuman‘
Pawn R -
_ M
! PCG @ View
Map Map H Setting
Setting { Luming
. 1]
—»{ NPC
—
Ga;"eMOde H ‘ ul Function H 5
o — Setting.
—»‘ Shoot =
Interaction {
| —
| Free View | lPhyscis Asset‘

Fig. 8. Overall game design of UBG. A collection of functions and
configurable interfaces.

in Table V, OaH-PPO achieved the highest frags score and
exhibited a higher rate of both suicides and deaths while also
achieving a higher number of kills. This may be attributed to
the intrinsic reward shaping being more offensive. Without Oa
module, H-PPO performance is significantly reduced, but it is
more in line with the rules of VDAIC 2016.

VII. CONCLUSION

In this article, we present a novel open-world FPS bench-
mark, UBG, which boasts high visual fidelity and complex
scenes. To train agents to play this game, we propose a hierar-
chical framework, OaH-PPO, which has been demonstrated to
master the intricate controls of UBG effectively. Furthermore,
our architecture can be generalized to other shooter games.

In terms of prospects, we aim to continue optimizing the
computational costs of the UBG platform and expand it to
more domains and types of games. On the other hand, our
algorithm framework also has the potential to be applied
in nonshooting game environments, which we will further
explore in the Appendix.

APPENDIX A
MORE GAME DESIGN

We will provide a detailed introduction to the UBG game
design from the aspects of game modules, game settings, API,
and computational cost.

A. Game Modules

As shown in Fig. 8, UBG has four main modules: pawns,
maps, functions, and interactions.
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1) Pawns: Video games require smooth and dynamic char-
acter movements. To achieve this, we utilize the animation
blueprint system within the UE. This system allows you to
create a comprehensive state-machine transition and combine
different animation sequences seamlessly. By doing so, you
can provide suitable animations for the player as they perform
various actions or transition between different actions.

The game also requires a character model that possesses
adaptable precision, allowing the character to utilize different
levels of precision. These adjustments should be respon-
sive and depend on the developer’s environment. The UE’s
MetaHuman resource not only speeds up the modeling process
but also enables the configuration of character model precision
through various levels of detail (LODs) tiers.

2) Maps: The game requires dynamic global illumina-
tion, which means that we must recreate realistic natural
sky lighting and atmospheric clouds, just like in the real
world. The virtual environment’s sunlight goes through regular
fluctuations, while changes in atmospheric clouds follow a
random pattern. By combining these dynamic elements for
global illumination, we can create a more realistic and diverse
experience for the players.

To achieve a realistic and diverse environment, we first
utilize terrain modeling to create maps of varying sizes and
dimensions, sculpting the terrain accordingly. Subsequently,
leveraging the PCG mechanism introduced in UE 5.2, we
can generate a diverse array of randomized cover objects
within maps that share similar topographical features. To
further enhance the fidelity of the simulation environment,
we can scan real assets (such as furniture) into a simulation
environment and introduce Proctor’s house layout generation
method [59] to create over 10k house layouts and indoor
scenes. By automatically adjusting the materials, they can
adapt to desert, forest, and urban scene modes. Finally, we
implement the object placement techniques from Grutopia [60]
to ensure that assets are appropriately positioned within the
generated layouts. Such a simulated environment will have
a complexity similar to the real world, in which algorithms
developed will have a higher potential for application in real-
world tasks.

3) Functions: The fundamental functionalities encompass
unrestricted player exploration within an open-world envi-
ronment. This includes the discovery of concealed areas for
exploration, retrieval of equipment, engagement in combat
with adversaries, and other fundamental mechanics intrinsic
to shooting games.

The game incorporates intelligent adversaries, in which the
in-game enemies are nonplayable characters (NPCs) equipped
with distinctive behavior trees. These opponents continuously
patrol specific areas, starting their patrol again after a set
period. Upon detecting the player’s presence, the enemies
swiftly transition into an attack mode, precisely targeting and
engaging the player with gunfire. In instances where the player
escapes their line of sight, the enemies revert to their routine
patrol activities, encompassing the exploration of the adjacent
vicinity.

The user interface (UI) offers players the capability to
fine-tune their equipment choices. Within the game, each
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(b)

Fig. 9. UBG multimap scene displays. (a) City map. (b) Desert map. (c) Forest map.

equipment category, such as helmets, body armor, attire, and
weaponry, boasts distinct attributes. For instance, a helmet
boasting heightened defense capabilities also translates to
increased weight, while a more potent sniper rifle entails
longer intervals between shots. Players must possess the
capacity to configure their preferred equipment types through
the UI, as well as discard any superfluous items.

4) Interactions: Diverse objects exhibit varying physical
interaction outcomes in scenarios that require interaction
within the scene. For instance, climbable walls, breakable
boxes, and inert stones each demonstrate distinctive physical
response characteristics. By harnessing the UE’s physical
assets and collision presets, it is feasible to harmonize the
physical simulation effects of assorted items.

Enabling perspective switching is imperative to transition
between first-person and third-person viewpoints seamlessly.
The third-person perspective offers an unobstructed vantage
point to glean comprehensive self-related information, while
the first-person view bolsters aiming precision when equipped
with a scope, enhancing targeting accuracy.

In the process of game development, it is essential to go
beyond creating a functional core and provide players with a
diverse range of interfaces that encourage free customization.

B. Game Settings

The content of UBG is rich and varied. Introducing some
features in UBG would better guide players to customize the
game content according to their needs.

1) Game Mode Setting: Ul allows players to select from
two distinct modes, namely, training mode and deathmatch
mode.

The training mode constitutes a streamlined experience with
relatively straightforward tasks. In this mode, the damage
inflicted by enemies will be reduced, the enemy count will
be minimal, their reaction speed will be sluggish, and their
surveillance range will be limited. These adjustments col-
lectively facilitate an environmental conducive for players to
grasp fundamental movement and shooting mechanics.

The deathmatch mode requires players to arm themselves
by picking up components on the ground. In this mode, the
ultimate goal is to kill as many enemies as possible. The
coordinates and movements of the enemies are random, so
players need to constantly search for them in the scene. In
comparison to the preceding mode, the deathmatch mode
puts more emphasis on testing players’ survival and offensive
strategies.

TABLE VI

THROUGHPUT (TOTAL MEAN FPS) OF THE ENVIRONMENT WITH DIF-
FERENT NUMBERS OF CONCURRENT PROCESSES, AGENTS, AND
ENVIRONMENTAL COMPONENT DENSITIES

Throughputs #Process
#Density  #Agents 1 2 3 4
1 70.6  140.2 2062 2135
0.1 5 704 1403 2034 200.2
10 704 1404 190.7 1885
1 703 139.8 2053 2064
0.2 5 704  139.8 1984 196.5
10 703  139.6 1844 1784
1 702 1394 2032  204.7
0.3 5 69.9 139.7 1928 1843
10 70.1  139.6 170.2 166.4

2) Map Environmental Setting: We provide a UI that
empowers players to choose from various map types while
simultaneously adjusting the likelihood and concentration of
dynamically generated items within the map. As shown in
Fig. 9, each map captures the dynamic changes in natural light-
ing and the unpredictable movement of atmospheric clouds.
For each distinct style of map, we have preset three resource
consumption modes—Ilow, medium, and high—to adapt to
different hardware devices (corresponding to three sets of
parameters in Table VI, with #density/#agents being 0.1/1,
0.2/5, and 0.3/10, respectively). By fine-tuning LOD, Lumen,
Nanite, and other scene optimization techniques available in
UE, it is possible to optimize performance and minimize
computational costs effectively.

a) City Map: The city map encompasses dimensions
of 12000 x 12000 unreal units and is characterized by a
relatively even terrain. Across this vast expanse, there are
breakable barriers scattered throughout the terrain, coexisting
with static structures such as houses. The integration of these
scene elements is facilitated through PCG techniques.

b) Desert Map: The desert map spans an expansive
8000 x 8000 unreal units area, characterized by gentle undu-
lations in the terrain. This environment is punctuated by an
abundance of shatterable obstacles and diverse vantage points
for sniping. The desert terrain showcases weathered rock
formations and shrubs generated through PCG methods.

c) Forest Map: The forest map spans a vast expanse
measuring 6000 x 6000 unreal units and is characterized by
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Fig. 10. Communication process diagram.

pronounced elevation variations. The terrain presents substan-
tial fluctuations in its topography. Diverse and intensified PCG
processes are applied to enrich the diverse landforms found
within the forest, resulting in augmented content density.

3) Auxiliary View Setting: We provide a Ul that empowers
players to configure image capture settings, top-down view
map resolution, and the activation of top-down view map
prompts. In the training mode, the highlighting of essential
items offers valuable assistance for training purposes.

4) Data Storage Mode Setting: The Ul allows players to
activate or deactivate the data storage function within this
section. Using this feature, we recorded 2 h of human player
data, approximately 90k.

5) Game-Type Expansion: Thanks to the Blueprint and
map editor of UE, UBG is not limited to FPS games. For
example, by modifying the map scenes and game objectives
(such as arriving at a specific place), it can be turned into a
maze, or even expanded into a strategic decryption game by
setting up mechanisms on the map. For a more challenging
experience, we can also introduce vehicle simulations such
as cars and helicopters based on real-world parameters [61],
providing applications for areas like autonomous driving and
racing. Specific operational instructions will be provided in
our documentation or UE beginner tutorial.

C. API

Upon completion of all configurations, the training of
the intelligent agent can be initiated. As shown in Fig. 10,
the fundamental logic governing UBG is primarily realized
through blueprint structures, while communication primarily
encompasses the synergy of C++ and Python frameworks.
Directives originating from Python are channeled to the C++
layer, where they are subsequently decoded by the blueprint
system to regulate character actions. In parallel, the blueprint
system proficiently acquires the character’s state information,
which is then transmitted to the Python layer through the C++
interface. This bidirectional information exchange culminates
in a full-communication cycle.

Considering the network-based communication between the
C++ and Python components, it is essential to preconfigure the
IP address and port settings in both the Python and blueprint
contexts before initiating communication. These predefined
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configurations hold significance in enabling distributed deploy-
ment and training capabilities for both the training terminal
and the UBG project.

| from UBG_env import UBGEnv

3 game = UBGEnv(record=False, image_shape=(256, 512, 1))
4 action_space = game.action 1 space: MultiDiscrete((9, 0 Zp Zp B))
mov ro

>tate, fire

1ge (10) =

6 # reset the game and
obs = game.reset ()

8 depth = game.img_depth

9 misc = game.state

10 while not misc[‘‘game over’’][0]:

11 # perform a randol

12 action = action_space.sample ()

13 next_obs, reward, done, info = game.step(action)

14 next_depth = game.img_depth

15 next_misc = game.state

5 for i i 1 sodes.

e screen buffer and game variables

action, here we just sample one from the action space.

16 # do something with the o
game.reward)

bservation and reward\ldots

1 print (*‘reward: ',

Below are excerpts of Python code showcasing control and
configuration settings.

In our settings, movement is divided into nine directions,
including standing still. The rotation direction has 11 options:
{-30, —-10, -4, -2, -1, 0, 1, 2, 4, 10, 30}, and there are
additional actions such as firing, jumping, and four special
interactive actions.

D. Computational Cost and Simulation Speed

UBG supports multiple environments in parallel, and the
high-fidelity graphics produced by UBG would lead to addi-
tional computation costs. Therefore, we quantify this cost by
evaluating the simulation speed across varying numbers of
parallel processes, agent numbers (both self and enemy), and
densities of environmental components (such as rocks, grass,
and trees). The result is shown in Table VI. All results are
tested on a computational device equipped with 24 Intel! 4310
(2.1 GHz) CPU cores and 1 NVIDIA 3090 GPU card, and the
maximum throughput for each number of agents is highlighted
in bold.

The results indicate that in our experimental setup, it is
suggested to have three or four parallel processes when the
number of NPC agents and component density are low. How-
ever, caution should be exercised when these two parameters
are set at high levels. In such cases, it is advisable to not
exceed three parallel processes to prevent overloading, which
has the potential to negatively impact the overall experimental
performance.

APPENDIX B
MORE ALGORITHMS DESIGN

A. Notation

For modeling the action decision process in our context,
a standard Markov decision process (MDP) (S, A, P, R,v)
is considered, where S and A denote the space of feasible
states and actions, respectively, R : S x A — R is the
reward function, P(s’|s, a) represent the transition probability
and y € (0,1] is the discount factor. A stochastic policy
n(als) + S x A — [0,1] maps state into action distribution.
A trajectory £ is given by the sequence of state-action pairs
{(s0,a0),(s1,a1),...}. Reinforcement learning from demon-
strations (RLfD) enhances traditional RL by introducing an
additional demonstration trajectories buffer Bp = {&, &1, - .}
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The objective of RL is to maximize the cumulative expected
(discounted) return along the whole decision procedure n(xr) =
E, [Z;” v'r(s;, at)], given current action policy 7. While RLfD
enhances RL by providing a set of demonstration trajectories
D = {&, ...} drawn from a referred expert with policy g as an
extra guidance other than reward. Such expert data can be use-
ful notably when environmental feedback is sparse or delayed,
in which the agent may suffer from ineffective explorations
since positive feedback could rarely occur. The RL agent aims
to find an optimal strategy m, to maximize the cumulative
expected return, i.e., the objective E(yayor [ Y, ¥'r(ss ar)]-

The semi-Markov decision process (Semi-MDP) offers a
theoretical framework for an option-based approach in which
the duration between actions (options) is uncertain. Formally,
the controller’s decision process can be conceptualized as
a semi-MDP M, = (S5,0,P.,Rg,y,F), based on multiple
worker-based MDP processes M; = (S, A, P, Re + Ri,y),
where F(t|s,0) represents the probability that the transition
time is ¢, when option o is executed in state s, which is
the termination condition. The controller selects workers i
according to its policy p. and assigns corresponding intrinsic
rewards R.

B. Action Spaces Decoupling

To account for the orthogonality between action spaces,
we divide A = A;xAyx--- x Ay, where A represents
the entire action space. A; represents an action subspace in
which actions are mutually exclusive (e.g., moving forward
and backward), actions between each A; are orthogonal (e.g.,
movement and turning), and M is the number of subspace
partitions. Suppose each action a = @, ...,a™ "), then the
workers’ PPO objective without clipping after decoupling is

M-1 .
ro(a”ls) ) A
\9>

max E - (10)
0 (sa)eB; <i=0 gy (@?1s)

C. More Intrinsic Reward Design

Resources Collector collects resources such as guns, ammo,
and medicine by walking around the map. Extrinsic rewards
provide the reward weight for successful collection Wy, so its
intrinsic rewards should include a positive reward for finding
and getting close to the item and a negative reward for staying
away from the resources. The top-down view map provides
easy access to the number of nearby resources n, and the

distance from each resource d, = (d,1,...,d,,,)
max” | Widwese =i, ng > 0

cDres(s) - i=1 E“tres s s
0, n-=0

where A5 < 1 and ayes are the hyperparameters of Gaussian
functions. Therefore, the intrinsic reward function of the
resources collector is

R?ﬁS(S’ a, SI) — erSq)rCS(SI) _ (DrCS(S)'

Upon successful collection of a resource, the intrinsic reward
will become negative, while the addition of the extrinsic
reward will result in positive feedback.
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Algorithm 1 OaH-PPO

1: Initialize experience replay buffer {Bg, By, Bf,, B} and
sample probability p = 1.

2: Initialize controller policy n§ and worker policies {ﬂg,i =
0,1...,n—1}. {n is the number of workers}

3: for Episode number j=0,1,...,E—1 do

4: Initialize game and get start state s

5: 0 « argmax mg(ols) {Take an option}

6: Get state s, that contains depth detection map and

intrinsic reward RS according to 6 {Object-aware}

7: R. <0, s1 <=5

8: while s is not terminal do

9: while not (s is terminal or terminal condition F is

satisfied) do

10: a « sample(n(als,)) {sample an action by
worker 0}

11: Execute a and obtain next state s’ and extrinsic
reward Rg from environment

12: Get state s/ that contains depth detection map
and intrinsic reward R?

13: Store transition (s,,a, Rg + R}, s.,,0) to BY

14: R. <~ R.+Rg,s, « s,

15: end while

16: if Terminal condition F is satisfied then

17: Store transition (s1,0, R, s") to B¢

18: 0 « arg max mry(o|s)

19: R. <0, sy «

20: end if

21: end while

22: Sample demonstrations with probability p. And update
the controller and workers with Eq 7.

23: Anneal p

24: end for

Enemies Navigator is responsible for finding enemies, so a
positive reward for finding an enemy

O (5) = 1, n.>1
0, n,=0.

Tools user is exclusively authorized to utilize tools such
as medicine and receives an additional positive reward for
successful tool usage, as well as a negative reward for being
attacked while using the tool

1, use successful
O >s) =41, Rt <0
0, else.

Algorithm 1 shows the overall flow of our algorithm. We
can see that although OaH-PPO is an algorithm designed for
FPS games, it can be applied to various 3-D open-world games
or real-world scenarios. For example, in puzzle games, the Oa
module can make the agent more sensitive to key items and
mechanisms, which we know are crucial for solving puzzles.
Based on a progressive puzzle-solving process, we can still
design intrinsic rewards for workers at different levels under a
hierarchical structure to break down main tasks. Needless to
say, the demonstration module is helpful for any game when
used effectively.
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